Предел фу́нкции — одно из основных понятий математического анализа.
Это понятие на интуитивном уровне использовалось ещё во второй половине 17 века английским физиком, математиком и астрономом Исааком Ньютоном (1642 - 1727), а также математиками 18 века - швейцарским, немецким и русским математиком Леонардом Эйлером (1707 - 1783) и французским математиком, астрономом и механиком Жозефом Луи Лагранжем (1736 - 1813). Это было связано с тем, что ученые того времени не ставили перед собой задачу построения теории пределов. Первые строгие определения предела последовательности дали в 1816 году чешский математик, философ, теолог Бернард Больцано (1781 - 1848) и французский математик Огустен Луи Коши (1789 - 1857) в 1821 году.
Теория пределов очень активно применяется в экономических расчетах, например, в доказательствах и расчетах, которые связаны с непрерывными процессами; в финансовых рентах. Пределы функции применяются для нахождения асимптот графика функции при ее исследовании.
Раскрытие неопределённостей — методы вычисления пределов функций, заданных формулами, которые в результате формальной подстановки в них предельных значений аргумента теряют смысл, то есть переходят в выражения типа:
по которым невозможно судить о том, существуют или нет искомые пределы, не говоря уже о нахождении их значений, если они существуют.
Раскрывать неопределенности позволяет:
упрощение вида функции (преобразование выражения с использованием формул сокращенного умножения, тригонометрических формул, домножением на сопряженные выражения с последующим сокращением и т.п.);
использование замечательных пределов;
применение правила Лопиталя;
использование таблицы эквивалентных бесконечно малых.
Неопределённость вида Пример 1. Раскрыть неопределённость и найти предел . Решение. Здесь старшая степень переменной n равна 2. Поэтому почленно делим числитель и знаменатель на : . Комментарий к правой части выражения. Стрелками и цифрами обозначено, к чему стремятся дроби после подстановки вместо n значения бесконечность. Степень n в знаменателя больше, чем в числителе, в результате чего вся дробь стремится к бесконечно малой величине или "супермалому числу". Получаем ответ: предел данной функции при переменной, стремящейся к бесконечности, равен . Пример 2. Раскрыть неопределённость и найти предел . Решение. Здесь старшая степень переменной x равна 1. Поэтому почленно делим числитель и знаменатель на x: . Комментарий к ходу решения. В числителе загоняем "икс" под корень третьей степени, а чтобы его первоначальная степень (1) оставалась неизменной, присваиваем ему ту же степень, что и у корня, то есть 3. Стрелок и дополнительных чисел в этой записи уже нет, так что попробуйте мысленно, но по аналогии с предыдущим примером определить, к чему стремятся выражения в числителе и знаменателе после подстановки бесконечности вместо "икса". Получили ответ: предел данной функции при переменной, стремящейся к бесконечности, равен нулю. Неопределённость вида Пример 3. Раскрыть неопределённость и найти предел . Решение. В числителе - разность кубов. Разложим её на множители, применяя формулу сокращённого умножения из курса школьной математики: . В знаменателе - квадратный трёхчлен, который разложим на множители, решив квадратное уравнение (ещё раз ссылка на решение квадратных уравнений): Запишем выражение, полученное в результате преобразований и найдём предел функции: Пример 4. Раскрыть неопределённость и найти предел Решение. Теорема о пределе частного здесь неприменима, поскольку Поэтому тождественно преобразуем дробь: умножив числитель и знаменатель на двучлен, сопряжённый знаменателю, и сократим на x +1. Согласно следствию из теоремы 1, получим выражение, решая которое, находим искомый предел: Пример 5. Раскрыть неопределённость и найти предел Решение. Непосредственная подстановка значения x = 0 в заданную функцию приводит к неопределённости вида 0/0. Чтобы раскрыть её, выполним тождественные преобразования и получим в итоге искомый предел:
Это понятие на интуитивном уровне использовалось ещё во второй половине 17 века английским физиком, математиком и астрономом Исааком Ньютоном (1642 - 1727), а также математиками 18 века - швейцарским, немецким и русским математиком Леонардом Эйлером (1707 - 1783) и французским математиком, астрономом и механиком Жозефом Луи Лагранжем (1736 - 1813). Это было связано с тем, что ученые того времени не ставили перед собой задачу построения теории пределов. Первые строгие определения предела последовательности дали в 1816 году чешский математик, философ, теолог Бернард Больцано (1781 - 1848) и французский математик Огустен Луи Коши (1789 - 1857) в 1821 году.
Теория пределов очень активно применяется в экономических расчетах, например, в доказательствах и расчетах, которые связаны с непрерывными процессами; в финансовых рентах. Пределы функции применяются для нахождения асимптот графика функции при ее исследовании.
Раскрытие неопределённостей — методы вычисления пределов функций, заданных формулами, которые в результате формальной подстановки в них предельных значений аргумента теряют смысл, то есть переходят в выражения типа:
Раскрывать неопределенности позволяет:
Неопределённость вида
Пример 1. Раскрыть неопределённость
Решение. Здесь старшая степень переменной n равна 2. Поэтому почленно делим числитель и знаменатель на
Комментарий к правой части выражения. Стрелками и цифрами обозначено, к чему стремятся дроби после подстановки вместо n значения бесконечность. Степень n в знаменателя больше, чем в числителе, в результате чего вся дробь стремится к бесконечно малой величине или "супермалому числу".
Получаем ответ: предел данной функции при переменной, стремящейся к бесконечности, равен
Пример 2. Раскрыть неопределённость
Решение. Здесь старшая степень переменной x равна 1. Поэтому почленно делим числитель и знаменатель на x:
Комментарий к ходу решения. В числителе загоняем "икс" под корень третьей степени, а чтобы его первоначальная степень (1) оставалась неизменной, присваиваем ему ту же степень, что и у корня, то есть 3. Стрелок и дополнительных чисел в этой записи уже нет, так что попробуйте мысленно, но по аналогии с предыдущим примером определить, к чему стремятся выражения в числителе и знаменателе после подстановки бесконечности вместо "икса".
Получили ответ: предел данной функции при переменной, стремящейся к бесконечности, равен нулю.
Неопределённость вида
Пример 3. Раскрыть неопределённость
Решение. В числителе - разность кубов. Разложим её на множители, применяя формулу сокращённого умножения из курса школьной математики:
В знаменателе - квадратный трёхчлен, который разложим на множители, решив квадратное уравнение (ещё раз ссылка на решение квадратных уравнений):
Запишем выражение, полученное в результате преобразований и найдём предел функции:
Пример 4. Раскрыть неопределённость
Решение. Теорема о пределе частного здесь неприменима, поскольку
Поэтому тождественно преобразуем дробь: умножив числитель и знаменатель на двучлен, сопряжённый знаменателю, и сократим на x +1. Согласно следствию из теоремы 1, получим выражение, решая которое, находим искомый предел:
Пример 5. Раскрыть неопределённость
Решение. Непосредственная подстановка значения x = 0 в заданную функцию приводит к неопределённости вида 0/0. Чтобы раскрыть её, выполним тождественные преобразования и получим в итоге искомый предел:
Примеры решения задач на данную тему:
http://www.mathprofi.ru/predely_primery_reshenii.html
http://www.matburo.ru/ex_ma.php?p1=mapred
http://function-x.ru/lim1.html
Калькуляторы:
http://www.webmath.ru/web/prog58_1.php
http://www.kontrolnaya-rabota.ru/s/predel/
http://matematikam.ru/calculate-online/predel-limit.php
http://www.mathforyou.net/Limit.html
http://www.matcabi.net/limit.php
http://www.reshim.su/blog/1-0-5
Полезные ресурсы:
http://www.webmath.ru/poleznoe/formules_7_0.php
Сайт, посвящённый математике http://mathematics.ru/courses/function/content/chapter1/section3/paragraph6/theory.html
Высшая математика для заочников и не только http://www.mathprofi.ru/predely_primery_reshenii.html